Antimon(III)-tellurid

Kristallstruktur
Kristallstruktur von Antimontellurid
_ Sb3+ 0 _ Te2−
Allgemeines
Name Antimon(III)-tellurid
Andere Namen
  • Antimontritellurid
  • Antimontellurid
Verhältnisformel Sb2Te3
Kurzbeschreibung

geruchloser Feststoff[1]

Externe Identifikatoren/Datenbanken
CAS-Nummer 1327-50-0
EG-Nummer 215-480-9
ECHA-InfoCard 100.014.074
PubChem 6369653
ChemSpider 21241420
Wikidata Q3517399
Eigenschaften
Molare Masse 626,30 g·mol−1
Aggregatzustand

fest[1]

Dichte

6,50 g·cm−3[1]

Schmelzpunkt

629 °C[1]

Sicherheitshinweise
GHS-Gefahrstoffkennzeichnung aus Verordnung (EG) Nr. 1272/2008 (CLP),[2] ggf. erweitert[1]
Gefahrensymbol Gefahrensymbol

Achtung

H- und P-Sätze H: 302​‐​332​‐​411
P: 261​‐​264​‐​273​‐​301+330+331​‐​304+340​‐​312​‐​391​‐​501[1]
Thermodynamische Eigenschaften
ΔHf0

−56,5 kJ·mol−1 [3]

Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen (0 °C, 1000 hPa).

Antimon(III)-tellurid ist eine anorganische chemische Verbindung des Antimons aus der Gruppe der Telluride.

Gewinnung und Darstellung

Antimon(III)-tellurid kann durch Reaktion von Antimon mit Tellur gewonnen werden.

Sie kann auch aus Antimon(III)-oxid mit Tellur und Natriumformiat bei hohem Druck dargestellt werden.[4]

Eigenschaften

Antimon(III)-tellurid ist ein grauer geruchloser Feststoff.[1] Die Verbindung hat eine rhomboedrische Kristallstruktur mit der Raumgruppe R3m (Raumgruppen-Nr. 166)Vorlage:Raumgruppe/166. Eine hexagonale Zelle enthält 15 Atome gruppiert in drei Schichten.[5] Es existiert auch eine monokline Hochdruckmodifikation.[6]

Verwendung

Antimon(III)-tellurid ist zusammen mit Bismuttellurid und anderen strukturell analogen Halbleitern eines der besten Materialien für bei Raumtemperatur thermoelektrische Geräte. Es ist eine Schlüsselkomponente von thermoelektrischen Materialien die ZT-Werte von 2,4 bei Raumtemperatur erreichen könnten.[7]

Einzelnachweise

  1. a b c d e f g Eintrag zu Antimon(III)-tellurid in der GESTIS-Stoffdatenbank des IFA, abgerufen am 28. Januar 2020. (JavaScript erforderlich)
  2. Nicht explizit in Verordnung (EG) Nr. 1272/2008 (CLP) gelistet, fällt aber mit der angegebenen Kennzeichnung unter den Gruppeneintrag antimony compounds, with the exception of the tetroxide (Sb2O4), pentoxide (Sb2O5), trisulphide (Sb2S3), pentasulphide (Sb2S5) and those specified elsewhere in this Annex in der Datenbank ECHA CHEM der Europäischen Chemikalienagentur (ECHA), abgerufen am 13. Juni 2025. Hersteller bzw. Inverkehrbringer können die harmonisierte Einstufung und Kennzeichnung erweitern.
  3. M. Binnewies, E. Milke: Thermochemical Data of Elements and Compounds. 2. Auflage. Wiley-VCH, weinheim 2002, ISBN 3-527-30524-6, S. 829.
  4. Jane E. Macintyre: Dictionary of Inorganic Compounds. CRC Press, 1992, ISBN 978-0-412-30120-9, S. 3807 (eingeschränkte Vorschau in der Google-Buchsuche).
  5. B. Yu. Yavorsky, N. F. Hinsche, I. Mertig, P. Zahn: Electronic structure and transport anisotropy of Bi2Te3 and Sb2Te3. In: Physical Review B. 84, 2011, doi:10.1103/PhysRevB.84.165208.
  6. S.M. Souza, C.M. Poffo, D.M. Trichês, J.C. de Lima, T.A. Grandi, A. Polian, M. Gauthier: High pressure monoclinic phases of Sb2Te3. In: Physica B: Condensed Matter. 407, 2012, S. 3781, doi:10.1016/j.physb.2012.05.061.
  7. R. Venkatasubramanian, E. Siivola, T. Colpitts & B. O’Quinn: Thin-film thermoelectric devices with high room-temperature figures of merit, In: Nature 413, 597-602, doi:10.1038/35098012