(519) Sylvania

Asteroid
(519) Sylvania
Berechnetes 3D-Modell von (519) Sylvania
Berechnetes 3D-Modell von (519) Sylvania
{{{Bild2}}}
{{{Bildtext2}}}
Eigenschaften des Orbits Animation
Epoche: 5. Mai 2025 (JD 2.460.800,5)
Orbittyp Mittlerer Hauptgürtel
Asteroidenfamilie
Große Halbachse 2,792 AE
Exzentrizität 0,183
Perihel – Aphel 2,280 AE – 3,304 AE
Perihel – Aphel  AE –  AE
Neigung der Bahnebene 11,010°
Länge des aufsteigenden Knotens 44,7°
Argument der Periapsis 303,1°
Zeitpunkt des Periheldurchgangs 27. Juli 2024
Siderische Umlaufperiode 4 a 243 d
Siderische Umlaufzeit {{{Umlaufdauer}}}
Mittlere Orbital­geschwin­digkeit {{{Umlaufgeschwindigkeit}}} km/s
Mittlere Orbital­geschwin­digkeit 17,68 km/s
Physikalische Eigenschaften
Mittlerer Durchmesser 40,1 km ± 0,3 km
Abmessungen {{{Abmessungen}}}
Masse Vorlage:Infobox Asteroid/Wartung/Masse kg
Albedo 0,25
Mittlere Dichte g/cm³
Rotationsperiode 17 h 58 min
Absolute Helligkeit 9,2 mag
Spektralklasse {{{Spektralklasse}}}
Spektralklasse
(nach Tholen)
S
Spektralklasse
(nach SMASSII)
S
Geschichte
Entdecker Raymond Smith Dugan
Datum der Entdeckung 20. Oktober 1903
Andere Bezeichnung 1903 UJ, 1909 CA, 1911 HD
Quelle: Wenn nicht einzeln anders angegeben, stammen die Daten vom JPL Small-Body Database. Die Zugehörigkeit zu einer Asteroidenfamilie wird automatisch aus der AstDyS-2 Datenbank ermittelt. Bitte auch den Hinweis zu Asteroidenartikeln beachten.

(519) Sylvania ist ein Asteroid des mittleren Hauptgürtels, der am 20. Oktober 1903 vom US-amerikanischen Astronomen Raymond Smith Dugan an der Großherzoglichen Bergsternwarte in Heidelberg bei einer Helligkeit von 11,5 mag entdeckt wurde.

Der Asteroid ist benannt in Anlehnung an den lateinischen Begriff silva ‚Wald‘, da der Entdecker schon als kleiner Junge gerne ausgedehnte Wälder durchstreifte. Edith Eveleth, die Schwester des Entdeckers, berichtete: „In Heidelberg kletterte er durch tiefe Wälder von der Stadt zum Königstuhl hinauf und hinunter; in den Ferien wanderte er durch den Schwarzwald, den Odenwald und alle Wälder in seiner Nähe.“

Wissenschaftliche Auswertung

Aus Ergebnissen der IRAS Minor Planet Survey (IMPS) wurden 1992 Angaben zu Durchmesser und Albedo für zahlreiche Asteroiden abgeleitet, darunter auch (519) Sylvania, für die damals Werte von 48,3 km bzw. 0,17 erhalten wurden.[1] Eine Auswertung von Beobachtungen durch das Projekt NEOWISE im nahen Infrarot führte 2011 zu vorläufigen Werten für den Durchmesser und die Albedo im sichtbaren Bereich von 43,9 km bzw. 0,20.[2] Ein Vergleich von Daten, die von 1978 bis 2011 an der Sternwarte Ondřejov in Tschechien und am Table Mountain Observatory in Kalifornien gesammelt wurden, mit den Daten von NEOWISE ergab 2012 Werte für den Durchmesser und die Albedo von 44,1 km bzw. 0,19.[3] Nachdem die Werte nach neuen Messungen mit NEOWISE 2012 auf 39,8 km bzw. 0,25 geändert worden waren,[4] wurden sie 2014 auf 40,1 km bzw. 0,27 korrigiert.[5]

Photometrische Messungen des Asteroiden fanden erstmals statt vom 20. September bis 13. Oktober 1982 am Table Mountain Observatory. Aus der während sechs Nächten aufgezeichneten Lichtkurve wurde eine Rotationsperiode von 17,962 h bestimmt.[6] Bei weiteren Beobachtungen vom 3. bis 5. August 1991 am La-Silla-Observatorium in Chile konnten die aufgezeichneten Daten nicht weiter ausgewertet werden, es wurde aber eine langsame Rotation vermutet.[7]

Aus archivierten Daten des United States Naval Observatory (USNO) in Arizona und der Catalina Sky Survey wurde in einer Untersuchung von 2013 erstmals ein dreidimensionales Gestaltmodell des Asteroiden für zwei alternative Rotationsachse, eine mit prograder und eine mit retrograder Rotation, beide nahe zur Ebene der Ekliptik gelegen, sowie eine Periode von 17,9647 h berechnet.[8]

Zwischen 2012 und 2018 wurden mit der All-Sky Automated Survey for Supernovae (ASAS-SN) auch photometrische Daten von 20.000 Asteroiden aufgezeichnet. Auf mehr als 5000 davon konnte erfolgreich die Methode der konvexen Inversion angewendet werden, darunter auch (519) Sylvania, für die in einer Untersuchung von 2021 ein verbessertes dreidimensionales Gestaltmodell für zwei alternative Rotationsachsen nahe zur Ebene der Ekliptik und eine Periode von 17,9642 h berechnet wurde.[9]

Aus archivierten Daten des Asteroid Terrestrial-impact Last Alert System (ATLAS) aus dem Zeitraum 2015 bis 2018 konnte in einer Untersuchung von 2022 mit der Methode der konvexen Inversion eine Rotationsperiode von 17,964 h bestimmt werden.[10] Im Jahr 2023 wurde aus photometrischen Messungen von Gaia DR3 erneut ein dreidimensionales Gestaltmodell des Asteroiden für eine Rotationsachse nahe zur Ebene der Ekliptik und einer Periode von 17,9652 h berechnet.[11]

Trivia

Der Name des Asteroiden wurde 1945 verwendet für die Taufe des US-amerikanischen Angriffsfrachtschiffs (Attack Cargo Ship) der Artemis-Klasse USS Sylvania (AKA-44).

Siehe auch

Commons: (519) Sylvania – Sammlung von Bildern, Videos und Audiodateien

Einzelnachweise

  1. E. F. Tedesco, P. V. Noah, M. Noah, S. D. Price: The Supplemental IRAS Minor Planet Survey. In: The Astronomical Journal. Band 123, Nr. 2, 2002, S. 1056–1085, doi:10.1086/338320 (PDF; 398 kB).
  2. J. R. Masiero, A. K. Mainzer, T. Grav, J. M. Bauer, R. M. Cutri, J. Dailey, P. R. M. Eisenhardt, R. S. McMillan, T. B. Spahr, M. F. Skrutskie, D. Tholen, R. G. Walker, E. L. Wright, E. DeBaun, D. Elsbury, T. Gautier IV, S. Gomillion, A. Wilkins: Main Belt Asteroids with WISE/NEOWISE. I. Preliminary Albedos and Diameters. In: The Astrophysical Journal. Band 741, Nr. 2, 2011, S. 1–20, doi:10.1088/0004-637X/741/2/68 (PDF; 73,0 MB).
  3. P. Pravec, A. W. Harris, P. Kušnirák, A. Galád, K. Hornoch: Absolute magnitudes of asteroids and a revision of asteroid albedo estimates from WISE thermal observations. In: Icarus. Band 221, Nr. 1, 2012, S. 365–387, doi:10.1016/j.icarus.2012.07.026 (PDF; 1,44 MB).
  4. J. R. Masiero, A. K. Mainzer, T. Grav, J. M. Bauer, R. M. Cutri, C. Nugent, M. S. Cabrera: Preliminary Analysis of WISE/NEOWISE 3-Band Cryogenic and Post-cryogenic Observations of Main Belt Asteroids. In: The Astrophysical Journal Letters. Band 759, Nr. 1, L8, 2012, S. 1–8, doi:10.1088/2041-8205/759/1/L8 (PDF; 3,27 MB).
  5. J. R. Masiero, T. Grav, A. K. Mainzer, C. R. Nugent, J. M. Bauer, R. Stevenson, S. Sonnett: Main Belt Asteroids with WISE/NEOWISE. Near-infrared Albedos. In: The Astrophysical Journal. Band 791, Nr. 2, 2014, S. 1–11, doi:10.1088/0004-637X/791/2/121 (PDF; 1,10 MB).
  6. A. W. Harris, J. W. Young, E. Bowell, D. J. Tholen: Asteroid Lightcurve Observations from 1981 to 1983. In: Icarus. Band 142, Nr. 1, 1999, S. 173–201, doi:10.1006/icar.1999.6181.
  7. C.-I. Lagerkvist, P. Magnusson, H. Debehogne, M. Hoffmann, A. Erikson, A. de Campos, G. Cutispoto: Physical Studies of Asteroids. XXV: Photoelectric Photometry of Asteroids obtained at ESO and Hoher List Observatory. In: Astronomy & Astrophysics Supplement Series. Band 95, Nr. 3, 1992, S. 461–470, bibcode:1992A&AS...95..461L (PDF; 249 kB).
  8. J. Hanuš, J. Ďurech, M. Brož, A. Marciniak, B. D. Warner, F. Pilcher, R. Stephens, R. Behrend, B. Carry, D. Čapek, P. Antonini, M. Audejean, K. Augustesen, E. Barbotin, P. Baudouin, A. Bayol, L. Bernasconi, W. Borczyk, J.-G. Bosch, E. Brochard, L. Brunetto, S. Casulli, A. Cazenave, S. Charbonnel, B. Christophe, F. Colas, J. Coloma, M. Conjat, W. Cooney, H. Correira, V. Cotrez, A. Coupier, R. Crippa, M. Cristofanelli, Ch. Dalmas, C. Danavaro, C. Demeautis, T. Droege, R. Durkee, N. Esseiva, M. Esteban, M. Fagas, G. Farroni, M. Fauvaud, S. Fauvaud, F. Del Freo, L. Garcia, S. Geier, C. Godon, K. Grangeon, H. Hamanowa, H. Hamanowa, N. Heck, S. Hellmich, D. Higgins, R. Hirsch, M. Husarik, T. Itkonen, O. Jade, K. Kamiński, P. Kankiewicz, A. Klotz, R. A. Koff, A. Kryszczyńska, T. Kwiatkowski, A. Laffont, A. Leroy, J. Lecacheux, Y. Leonie, C. Leyrat, F. Manzini, A. Martin, G. Masi, D. Matter, J. Michałowski, M. J. Michałowski, T. Michałowski, J. Michelet, R. Michelsen, E. Morelle, S. Mottola, R. Naves, J. Nomen, J. Oey, W. Ogłoza, A. Oksanen, D. Oszkiewicz, P. Pääkkönen, M. Paiella, H. Pallares, J. Paulo, M. Pavic, B. Payet, M. Polińska, D. Polishook, R. Poncy, Y. Revaz, C. Rinner, M. Rocca, A. Roche, D. Romeuf, R. Roy, H. Saguin, P. A. Salom, S. Sanchez, G. Santacana, T. Santana-Ros, J.-P. Sareyan, K. Sobkowiak, S. Sposetti, D. Starkey, R. Stoss, J. Strajnic, J.-P. Teng, B. Trégon, A. Vagnozzi, F. P. Velichko, N. Waelchli, K. Wagrez, H. Wücher: Asteroids’ physical models from combined dense and sparse photometry and scaling of the YORP effect by the observed obliquity distribution. In: Astronomy & Astrophysics. Band 551, A67, 2013, S. 1–16, doi:10.1051/0004-6361/201220701 (PDF; 400 kB).
  9. J. Hanuš, O. Pejcha, B. J. Shappee, C. S. Kochanek, K. Z. Stanek, T. W.-S. Holoien: V-band photometry of asteroids from ASAS-SN. Finding asteroids with slow spin. In: Astronomy & Astrophysics. Band 654, A48, 2021, S. 1–11, doi:10.1051/0004-6361/202140759 (PDF; 1,16 MB).
  10. J. Ďurech, M. Vávra, R. Vančo, N. Erasmus: Rotation Periods of Asteroids Determined With Bootstrap Convex Inversion From ATLAS Photometry. In: Frontiers in Astronomy and Space Sciences. Band 9, 2022, S. 1–7, doi:10.3389/fspas.2022.809771 (PDF; 1,01 MB).
  11. J. Ďurech, J. Hanuš: Reconstruction of asteroid spin states from Gaia DR3 photometry. In: Astronomy & Astrophysics. Band 675, A24, 2023, S. 1–13, doi:10.1051/0004-6361/202345889 (PDF; 32,9 MB).